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Abstract

Change propagation is a technique for automatically
adjusting the output of an algorithm to changes in the
input. The idea behind change propagation is to track
the dependences between data and function calls, so
that, when the input changes, functions affected by that
change can be re-executed to update the computation
and the output. Change propagation makes it possible
for a compiler to dynamize static algorithms. The
practical effectiveness of change propagation, however,
is not known. In particular, the cost of dependence
tracking and change propagation may seem significant.

The contributions of the paper are twofold. First,
we present some experimental evidence that change
propagation performs well when compared to direct im-
plementations of dynamic algorithms. We implement
change propagation on tree-contraction as a solution to
the dynamic trees problem and present an experimental
evaluation of the approach. As a second contribution,
we present a library for dynamic-trees that support a
general interface and present an experimental evalua-
tion by considering a broad set of applications. The
dynamic-trees library relies on change propagation to
handle edge insertions/deletions. The applications that
we consider include path queries, subtree queries, least-
common-ancestor queries, maintenance of centers and
medians of trees, nearest-marked-vertex queries, semi-
dynamic minimum spanning trees, and the max-flow al-
gorithm of Sleator and Tarjan.

1 Introduction

Change propagation is a technique for automatically up-
dating the output of an algorithm or program accord-
ing to a change in the input. A recent paper [1] intro-
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duces change propagation and studies its semantics and
correctness. A subsequent paper [2] presents analysis
techniques for analyzing the performance change prop-
agation and applies change propagation to the dynamic-
trees problem [17].

Change propagation relies on keeping a graph of de-
pendences between code and data. Whenever a memory
location is read, a dependence is created between that
location and the function that reads the location. Once
a computation is performed, any value stored in memory
(in particular, the inputs) can be changed and the com-
putation can be updated by propagating the changes
through memory by a change-propagation algorithm.

The change-propagation algorithm maintains a set
of functions affected by the changes and re-executes
them in sequential-execution order. When a re-executed
function changes a memory location by writing to it,
all functions that read the changed location become af-
fected. Since re-execution can create new reads and
obliterate previously performed reads due to condition-
als, the dependences themselves change dynamically.
Since dependence tracking and change propagation are
automatic, a compiler can be used to dynamize static
algorithms. Change propagation can therefore dramat-
ically simplify the design and implementation of algo-
rithms and data structures for handling changing inputs
such as dynamic and kinetic data structures.

In previous work [2] we showed that applying
change propagation on static tree-contraction algorithm
of Miller and Reif [14] yields a solution to the dynamic
trees-problem of Sleator and Tarjan [17]. Dynamic-
trees data structures are fundamental structures that
arise as a substep in many important algorithms such
as dynamic graph algorithms [12, 6, 11, 8], max-flow
algorithms [17, 18, 9], computational geometry algo-
rithms [10]. Several dynamic-tree data structures have
been proposed including Link-Cut Trees [17, 18], Euler-
Tour Trees [11, 20], Topology Trees [8], and Top
Trees [3, 4, 19].

Our approach is to map a forest of possibly un-
balanced trees, called primitive trees, to a set of
balanced trees, called RC-Trees (Rake-and-Compress
Trees) by applying tree-contraction technique of Miller
and Reif [14] on each primitive tree, and use change
propagation to update the RC-Trees when edges are



inserted/deleted dynamically [2] into/from the primi-
tive trees. To process applications-specific queries we
annotate RC-Trees with application-specific data and
use standard techniques to compute queries. To pro-
cess application-specific data changes, we recompute the
annotations of the RC-Trees that are affected by the
change.

Since we rely on tree-contraction to map unbal-
anced trees to balanced tree, the primitive trees (the
trees being mapped) must be bounded degree. There-
fore, all our experiments involve bounded-degree trees.
Since any tree can be represented as a bounded-degree
tree, this restriction causes no loss of generality. In
particular, RC-Trees can be applied to arbitrary trees
by mapping an arbitrary tree T to a bounded-degree
tree T ′ by splitting high-degree nodes into bounded-
degree nodes [7], and by building an RC-Tree based
on the bounded-degree tree T ′. To support dynamic-
tree operations, the mapping between T and T ′ must
be maintained dynamically as the degree of the ver-
tices in T change due to insertions/deletions by join-
ing and splitting the vertices of T ′. In certain applica-
tions, it is also possible to preprocess the input to ensure
that bounded-degree dynamic-tree data structures can
be used directly (without having to split and merge ver-
tices dynamically). For example, the input network for
a max-flow algorithm can be preprocessed by replacing
high-degree vertices with a network of bounded-degree
vertices that are connected via infinite capacity edges.

The advantages of change propagation include,

• composibility: the ability to input the result of one
dynamic algorithm to another while ensuring that
all changes are propagated,

• the ability to handle batch changes, and

• ease of programming.

Since dependence tracking and change propagation can
be completely automated [2, 1], the static-to-dynamic
transformation can be done by a compiler. In this paper,
we perform the transformation semi-automatically as
described in Section 5.

Contributions of this Paper. The objectives
of this paper are to assess practical effectiveness of
change propagation, and to provide an implementation
and evaluation of a dynamic-trees data structure that
supports a broad range of applications. The code for
the implementation is publicly available through the
Aladdin Center web site at www.aladdin.cs.cmu.edu.

Beyond the focus on change propagation, our im-
plementation and experiments have the following prop-
erties:

1. The original data structure [2] uses O(n log n) space
and is strongly history independent. We present
an O(n)-space implementation that is history inde-
pendent (oblivious) as defined by Micciancio [13].
The implementation can be made weakly history
independent according to the definition of history
independence by Naor and Teague [15] within the
same time bounds by using their memory allocator.

2. The data structure separates structural operations
(links and cuts) from application-specific queries
and data changes: the structure (i.e., shape, lay-
out) of the data structure depends only on the
structure of the underlying tree and is changed only
by link and cut operations, applications-specific
queries and data changes merely traverse the RC-
Trees and change the annotations (tags).

Previous data structures such as Link-Cut
Trees [17, 18] and Top-Trees [4, 3] do allow the
structure of the data structure to be modified by
application queries via the evert and the expose op-
erations. For example, in Link-Cut trees, one node
of the underlying tree is designated as root, and
all path queries must be with respect to this root.
When performing a path query that does not in-
volve the root, one end point of the path query
must be made root by using the evert operation.
In top trees, the user operates on the data struc-
ture using a set of operations provided by the inter-
face and is expected to access only the root node of
the data structure. The user ensures that the root
note contains the desired information by using the
expose operation. The expose operation often re-
structures the data structure. For example, in top
trees, a path query that is different than the pre-
vious path query requires an expose operation that
restructures the data structure.

3. The data structure directly supports batch changes.

4. We present an experimental evaluation by consid-
ering a large number of applications including

• path queries as supported by Link-Cut
Trees [17, 18],

• subtree queries as supported by Euler Tour
Trees [11, 20],

• non-local search: centers, medians, and
least-common-ancestors as supported by Top
Trees [4, 3],

• finding the distance to a set of marked vertices
from any source,

• semi-dynamic (incremental) minimum span-
ning trees, and



• max-flow algorithm of Sleator and Tarjan [17].

Our experiments confirm the theoretical time bounds
for change propagation and show that the approach
can yield efficient dynamic algorithms even when com-
pared to direct implementations. The experiments show
that the full separation of application-specific opera-
tions from structural operations significantly speed up
application-specific operations such as queries and data
changes. When compared to a direct implementation of
Link-Cut Trees [17, 18], path queries are up to a factor
of three faster, whereas structural operations are up to
a factor of five slower. This trade-off can make one data
structure preferable to the other depending on the appli-
cation. For example, an incremental minimum-spanning
tree algorithm can perform many more queries than in-
sertions and deletions, whereas a max-flow algorithm is
likely to perform more structural operations.

A key property of change propagation is that it
directly supports batch processing of changes without
requiring any change to the implementation. In the
context of dynamic-trees, our experiments show a large
performance gap (asymptotically a logarithmic factor)
between batch and one-by-one processing of changes as
would be required in previously proposed data struc-
tures. Batch changes arise in the following two settings:

1. multiple, simultaneous changes to the input: For
example, the user of a dynamic minimum-spanning
tree algorithm may choose to delete many edges
at once. In this case, it would be more efficient
to process all changes by a single pass on the
data structure than to break them up into single
changes.

2. propagation of a single change to multiple changes:
For example, the dynamic connectivity and the
Minimum-Spanning Tree algorithms of Holm et
al [12], maintain a hierarchy of dynamic trees.
When a single edge is deleted from the input graph,
a number of edges in one level of the hierarchy
can be inserted into the next level. Since the
dynamic-trees data structure for the next level is
never queried until all insertions are performed, the
insertions can be processed as a batch. In general,
supporting batch changes is essential if dynamic
data structures are to be composed, because a
single change can propagate to multiple changes.

2 Rake-and-Compress Trees

This section describes a solution to the dynamic-trees
problem based on change propagation on a static tree-
contraction algorithm. The section summarizes the
previous work [2] and gives more detail on the processing
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Figure 1: A weighted tree.

of application-specific queries.
We use Miller and Reif’s tree-contraction algo-

rithm [14] to map arbitrary, bounded-degree trees to
a balanced trees. We call the trees being mapped, the
primitive trees, and the balanced trees that they are
mapped to, the RC-Trees (Rake-and-Compress Trees).
RC-Trees represents a recursive clustering of primitive
trees. Every node of an RC-Tree represents a cluster
(subtree) of the corresponding primitive tree.

To apply RC-Trees to a particular problem, we an-
notate RC-Trees with information specific to that prob-
lem, and use tree traversals on the RC-Trees to compute
properties of the primitive trees. Tree traversals on RC-
Trees alone suffice to answer dynamic queries on static
primitive trees. To handle dynamic changes to primitive
trees, i.e., edge insertions and deletions, we use change
propagation. Given a set of changes to a primitive tree,
the change-propagation algorithm updates the RC-Tree
for that primitive tree by rebuilding the parts of the
RC-Tree affected by the change.

2.1 Tree Contraction and RC-Trees. Given some
tree T , the tree-contraction algorithm of Miller and
Reif [14] contracts T to a single vertex by applying rake
and compress operations over a number rounds. Rake
operations delete all leaves in the tree and compress
operations delete an independent set of vertices that lie
on chains, i.e., paths consisting of degree two vertices.
When the tree is contracted into a single vertex, a
special finalize operation is performed to finish tree
contraction. When using the random-mate technique,
tree contraction takes expected linear time, and requires
logarithmic number of rounds (in the size of the input)
in expectation [14].

The original tree-contraction algorithm of Miller
and Reif was described for directed trees. In this
paper, we work with undirected trees and use the
generalization tree contraction for undirected trees [2].
For applications, we assume that the edges and vertices
of trees can be assigned weights (for edges) and labels
(for vertices) respectively. Weights and labels can be of
any type.

As an example consider the weighted tree shown in
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Figure 2: An example tree-contraction.

Figure 1. Figure 2 shows the complete contraction of the
tree (the rounds increase from top to bottom). Since
tree contraction does not depend on the weights they
are omitted from Figure 2. Each round of a contraction
deletes a set of vertices by using the rake and compress
operations.

— A rake operation deletes a leaf and the edge adja-
cent to it, and stores the contribution of the deleted
vertex and the edge in its neighbor. The contribu-
tion of a raked vertex is computed by calling the
rake data operation that is specified by the ap-
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Figure 4: An RC-Tree.

plication. The rake data operation computes the
contribution from 1) the label of the deleted vertex,
2) contributions stored at that vertex, and 3) the
weight of the deleted edge.

— A compress operation removes a degree two vertex,
say v, and the edges adjacent to it, (u, v) and
(v, w), and inserts an edge (u, w), and stores the
contribution of v, (u, v), and (v, w) on u and w. The
contribution of a compressed vertex is computed
by calling the compress data operation that is
specified by the application. The compress data
operation computes the contributions from 1) the
label of v, 2) the contributions stored at v, and 3)
the weights of (u, v) and (v, w).

For example, in Figure 2, the first round rakes the
vertices a, d, n, and k and compresses g, and i. At
the end of the contraction, when the tree is reduced to
a single vertex, a special finalize operation is performed
to compute a value from the contributions stored at that
vertex by calling the finalize data operation that is
specified by the application.

Tree contraction can be viewed as recursively clus-
tering a tree into a single cluster. Initially the vertices
and the edges form the base clusters. The rake, com-
press, and finalize operations form larger clusters by a
number of smaller clusters and a base cluster consist-
ing of a single vertex. In Figure 2, all clusters (except
for the base clusters) are shown with petals. Each clus-
ter is labeled with the capitalized label of the vertex



joining into that cluster. For example, raking vertex
a creates the cluster A consisting of a and b, and the
edge (a, b); compressing the vertex g creates the cluster
G, consisting of the vertex g and the edges (f, g) and
(g, h). In the second round, raking the vertex b creates
the cluster B that contains the cluster A and the edge
(b, c). In the last round, finalizing f creates the cluster
F that contains the clusters C and J . Figure 3 shows
the clustering consisting of all the clusters created by
the contraction shown in Figure 2.

We define a cluster as a subtree of the primitive tree
induced by a set of vertices. For a cluster C, we say that
vertex v of C is a boundary vertex if v is adjacent to a
vertex that does not belong to C. The boundary of a
cluster consists of the set of boundary vertices of that
cluster. The degree of a cluster is the number vertices
in its boundary. For example, in Figure 3, the cluster A
has the boundary {b}, and therefore has degree one; the
boundary of the cluster G is {f, g} and therefore G has
degree two. In tree contraction, all clusters except for
the final cluster has degree one or degree two. We will
therefore distinguish between unary, binary, and final
clusters. It is a property of the tree contraction that

1. the rake operations yield unary clusters,

2. the compress operations yield binary clusters, and

3. the finalize operation yields the final cluster which
has degree zero.

The contraction of a primitive tree can be repre-
sented by a tree, called RC-Tree, consisting of clusters.
Figure 4 shows the RC-Tree for the example contraction
shown in Figures 2 and 3. When drawing RC-Trees, we
draw the unary clusters with circles, the binary clusters
with squares, and the final cluster with two concentric
circles. Since tree contraction takes expected logarith-
mic number of rounds, the RC-Tree of a primitive tree
is probabilistically balanced. It is in this sense, that tree
contraction maps unbalanced trees to balanced trees.

Throughout this paper, we use the term “node”
with RC-Trees and the term “vertex” with the under-
lying primitive trees. We do not distinguish between a
node and the corresponding cluster when the context
makes it clear.

2.2 Static Trees and Dynamic Queries. RC-
Trees can be used to answer dynamic queries on static
trees. The idea is to annotate the RC-Trees with
application-specific information and use tree traversals
on the annotated trees to answer application-specific
queries. To enable annotations, we require that the
applications provide rake data, compress data, and
finalize data functions that describe how data (edge

weights and/or vertex labels) is combined during rake,
compress, and finalize operations respectively. Using
these operations, the tree-contraction algorithm tags
each cluster with the value computed by the rake data,
compress data, and finalize data operation com-
puted during the operation that forms that cluster.

Once an RC-tree is annotated, it can be used
to compute various properties of the corresponding
primitive tree by using standard tree traversals. For
all applications considered in this paper, a traversal
involves a constant number of paths between the leaves
and the root of an RC-Tree. Depending on the query,
these paths can be traversed top down, or bottom-up,
or both ways. Since RC-Trees are balanced with high
probability, all such traversals require logarithmic time
in expectation.

Section 3 describes some applications demonstrat-
ing how RC-Trees can be used to answer various queries
such path queries, subtree queries, non-local search
queries in expected logarithmic time.

2.3 Dynamic Trees and Dynamic Queries. To
support dynamic trees, i.e., edge insertion/deletions
(link and cuts), we use change propagation. Change
propagation effectively rebuilds the tree-contraction in
expected logarithmic time by only rebuilding the clus-
ters affected by the change [2] and computing their an-
notations.

To support data changes, we update the annota-
tions in the tree by starting at the leaf of the RC-Tree
corresponding to the changed vertex or edge and propa-
gating this change up the RC-Trees. Since RC-Trees are
balanced with high-probability this requires expected
logarithmic time.

Theorem 2.1 (Dynamic Trees) For a bounded-
degree forest F of n vertices, an RC-Forest FRC of F
can be constructed and annotated in expected O(n) time
using tree-contraction and updated in expected O(log n)
time under edge insertions/deletions, and application
specific data changes. Each tree in the RC-Forest FRC

has height expected O(log n).

3 Applications

This section describes how to implement a number of
applications using RC-Trees. Experimental results with
these application are given in Section 5. Implementing
an application using RC-Trees involves

1. providing the rake data, compress data, and
finalize data operations that specify how data
is combined during rake, compress, and finalize op-
erations respectively, and
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Figure 5: An RC-Tree with tags.

2. implementing the queries on top of RC-Trees using
standard tree traversals.

This section considers the following applications:
path queries, subtree queries, diameter queries, cen-
ter/median queries, least-common-ancestor queries, and
nearest-marked-vertex queries. Of these queries, path
queries, subtree queries, diameter queries, and nearest-
marked-vertex queries all require simple tree traversal
techniques that traverse a fixed number of bottom-up
paths in the RC-Tree. Other queries, including cen-
ters/medians and least-common ancestor queries, re-
quire traversing a fixed number of bottom-up and top-
down paths. Queries that require top-down traversal are
sometimes called non-local search queries [4], because
they cannot be computed by only using local informa-
tion pertaining to each cluster.

Throughout this paper, we work with undirected
trees. Applications that rely on directed trees specify
an arbitrary root vertex with each query. For the
discussion, we define the cluster path of a binary cluster
as the path between its two boundary vertices.

3.1 Path Queries. A path query [17, 18] asks for
the heaviest edge on a path. Consider, as an example,
the tree shown in Figure 1. The answer for the path
query with vertices c and m is the edge (e, f) with
weight 12. In general path queries can be defined
on arbitrary associative operations on weights. The
techniques described here apply in this general setting.

For this description, we assume that a path query
asks for the weight of the heaviest edge on a given
path—the heaviest edge itself can be computed by keep-
ing track of edges in addition to weights. To answer
path queries, we annotate each binary cluster with the
weight of the heaviest edge on its cluster path. All other
clusters (unary and final) will have no tags. These anno-
tations require that the application programmer specify
the functions rake data, and finalize data as “no-
ops”, and compress data as the maximum operation
on edge weights.

Figure 5 shows the RC-Tree for the contraction

shown in Figure 3 where each binary cluster is annotated
with the weight of the heaviest edge on its cluster path.
For example, the cluster e is tagged with 12, because
this is the largest weight on its cluster path consisting of
the edges (c, e) and (e, f). The tag of each binary cluster
is written in a hexagon. The RC-Tree is an annotated
version of the tree in Figure 4.

By using the annotations, the maximum edge
weight on the path between u and v can be found by
simultaneously walking up the tree from u and v until
they meet. For each cluster from u, we compute the
maximum weight between u and the boundary vertices
of that cluster. Similarly, for each cluster on the path
from v, we compute the maximum weight between v
and the boundary vertices of that cluster. Consider the
cluster C that two paths meet and let Cu be the child
of C on the path from u, and let Cv be the child of C on
the path from v. The answer to the query is the maxi-
mum of the values computed for the common boundary
vertex of Cu and Cv.

As an example, consider the primitive tree shown
in Figure 1, its clustering Figure 3, the RC-Tree shown
in Figure 5. Consider the path query with c and m.
Consider the path from c to the root. The cluster C
will be tagged with 12 because this is the heaviest weight
between c and f (the boundary of C), and the cluster F
will be tagged with 12. Consider now the path from m.
The cluster M will be tagged with 11 and the cluster
J will be tagged with 11. Since f is the first common
boundary between the two paths explored, the result is
12, the maximum of the values associated with f , i.e.,
11 and 12.

3.2 Subtree Queries. A subtree query asks for the
heaviest edge in a subtree. The subtree specified by a
tree root r and a root v of the subtree. Consider, as an
example, the tree shown in Figure 1. The answer for the
path query with tree root c and subtree root m is the
edge (l, k) with weight 13. In general subtree queries
can be defined on arbitrary associative operations on
weights. The technique described here applies in this
general setting.

To answer subtree queries, we annotate each clus-
ter with the weight of the heaviest edge in that
cluster. These annotations require that the appli-
cation programmer specifies the functions rake data,
compress data, and finalize data as the maximum
operation.

By using the annotations, the maximum edge
weight in a subtree specified by a tree root r and a
subtree root v can be found by simultaneously walking
up the tree from r and v until the paths meet. For the
clusters on path from r, we compute no information.



For each cluster on the path from v, we compute the
heaviest edge in the subtree rooted at v with respect
to each boundary vertex as the tree root. Consider the
RC-Tree node C that two paths meet and let Cr be the
child of C on the path from r, and let Cv be the child of
C on the path from v. The answer to the query is the
maximum of the tag for Cr and the value computed for
Cv for the common boundary vertex of Cr and Cv.

This technique for finding the heaviest edge in a
subtree can be used to compute other kinds of subtree
queries, such as queries that can be computed by Euler-
Tour Trees [20, 11], by replacing the maximum operator
with the desired associative operator.

3.3 Diameter. The diameter of a tree is the length
of the longest path in the tree. For example, the longest
path in the tree shown in Figure 1 is the path between
a and k; therefore the diameter is 80. To compute the
diameter of a tree, we annotate

— each unary cluster with its diameter, and the length
of the longest path originating at its boundary
vertex,

— each binary cluster with the length of its cluster
path, its diameter, and length of the longest path
originating at each boundary vertex, and

— the final cluster with its diameter.

It is relatively straightforward to specify the rake data,
compress data, and finalize data operations to en-
sure that the clusters are annotated appropriately.

Since the root of the RC-Tree is tagged with the
diameter of the tree, computing the diameter requires
no further traversal techniques. Note that, since change-
propagation updates the annotations of the RC-Trees,
the diameter will be updated appropriately when edge
insertions/deletions take place.

3.4 Distance to the Nearest Marked Vertex.
This type of query asks for the distance from a given
query vertex to a set of predetermined marked ver-
tices and has applications to metric optimization prob-
lems [4]. As an example, consider the tree shown in Fig-
ure 1 and suppose that the vertices a and n are marked.
The answer to the nearest marked vertex query for ver-
tex d is 17, because the length of the path between d
and a is 17, whereas the length of the path between d
and a is 60.

For this application, we annotate 1) each binary
cluster with the length of its cluster path, and 2) each
cluster with the distance between each boundary vertex
and the nearest marked vertex in that cluster. The an-
notations are easily computed by specifying rake data,

compress data, and finalize data operations based
on the minimum and addition operations on weights.

Given an annotated RC-Tree, we compute the
distance from a query vertex v to the nearest marked
vertex by walking up the RC-Tree from v as we compute
the following values for each cluster on the path: 1) the
minimum distance between v and the nearest marked
vertex in that cluster, 2) the minimum distance between
v and each boundary vertex. The answer to the query
will be computed when the traversal reaches the root of
the RC-Tree.

3.5 Centers and Medians. Centers and medians
are non-local-search queries [4] and therefore require
both a bottom-up and a top-down traversal of RC-Trees.
They are quite similar, and therefore, we describe center
queries only here.

For a tree T with non-negative edge weights, a
center is defined as a vertex v that minimizes the
maximum distance to other vertices in the tree. More
precisely, let dT (v) be the maximum distance from
vertex v to any other vertex in the tree T . A center of
T is a vertex c such that dT (c) ≤ dT (v) for any vertex
v.

To find the center of a tree, we annotate 1) each
cluster C with dC(v) for each boundary vertex v of C,
and 2) each binary cluster with the length of its cluster
path. The annotations are easily computed by speci-
fying rake data, compress data, and finalize data
operations based on the maximum and addition opera-
tions on weights.

Given an annotated RC-Tree, we locate a center by
taking a path from the root down to the center based on
the following observation. Consider two clusters C1 and
C2 with a common boundary vertex v. Assume without
loss of generality that dC1(v) ≥ dC2(v) and let u be a
vertex of C1 farthest from v. Then a center of C1 ∪ C2

is in C1, because any vertex in C1 is no closer to u than
v.

We find the center of the tree by starting at the
root of the support tree and taking down a path to the
center by visiting a cluster that contains a center next.
To determine whether a cluster contains a center, we
use the annotations to compute the distance from each
boundary vertex to the rest of the tree and to the cluster
and use the property of centers mentioned above.

3.6 Least Common Ancestors. Given a root r and
vertices v and w, we find the least common ancestor of
v and w with respect r by walking up the tree from
all three vertices simultaneously until they all meet and
then walking down two of the paths to find the least
common ancestor.



Consider the cluster C that the paths from r, v,
and w meet. If this is the first cluster that any two
paths meet, then the vertex c joining into C is the least
common ancestor. Otherwise, one of the children of C
contains two clusters; move down to that cluster and
follow the path down until the two paths split. If paths
split at a binary cluster, proceed to the cluster pointing
in the direction of the vertex whose path has joined last
and follow the path down to the first unary cluster U ;
the vertex u joining into U is the least common ancestor.
If the paths split at a unary cluster U , and both paths
continue to unary clusters, then the vertex joining into
U is the least common ancestor. Otherwise, continue
to the binary cluster and follow the path down to the
first unary cluster U ; the vertex joining to U is the least
common ancestor.

4 Implementation and the Experimental Setup

We implemented a library for dynamic trees based
on change propagation as described by Acar et al [2]
and implemented a general purpose interface for dy-
namic trees. The code for the library is publicly
available at the home page of the Aladdin Center
http://www.aladdin.cs.cmu.edu.

We performed an experimental evaluation of
this implementation by considering a semi-dynamic
minimum-spanning-tree algorithm, the max-flow algo-
rithm of Sleator and Tarjan [17], and some synthetic
benchmarks. The synthetic benchmarks start with
a single primitive tree and its RC-Tree and apply
a sequence operations consisting of links/cuts, data
changes, and queries. Proper forests arise as a result
of edge deletions.

This section describes the implementation, and how
we generate the primitive input trees and the sequence
of operations that our synthetic benchmarks rely on.

4.1 The Implementation. The implementation dy-
namizes a standard implementation of the tree con-
traction algorithm of Miller and Reif [14] by applying
the dependence tracking techniques presented in other
work [2]. The implementation represents each tree as
a linked list of nodes ordered arbitrarily. Each node
has an adjacency list of pointers to its neighbors in
the tree. Dependence tracking requires remembering
the complete tree from each round and creating depen-
dences between copies of the same node between consec-
utive rounds. The dependences are created by a special
read operation that reads the contents of a vertex, per-
forms a rake or compress operation on the vertex, and
copies the contents to the next round if the vertex re-
mains alive. The implementation is otherwise identical
to the implementation of the standard tree contraction

algorithm. Since the contracted tree from each round is
stored in the memory the implementation uses expected
O(n) space.

Change propagation is implemented by maintain-
ing a first-in-first-out queue of vertices affected by the
changes and rerunning the rake and compress opera-
tions of the original algorithm on the affected vertices
until the queue becomes empty. The edge insertion and
deletions initialize the change propagation queue by in-
serting the vertices involved in the insertion or deletion.
During change propagation, additional vertices are in-
serted to the queue when a vertex that they read (has
a dependence to) is written.

Since the implementation uses change propagation
to update the RC-Trees, the structure (shape, layout)
of the data structure depends only on the most current
primitive tree. The data structure is therefore history-
independent as defined my Micciancio [13, 2]. The data
structure can be made weakly history-independent ac-
cording to the stronger definition of history indepen-
dence by Naor and Teague by using their memory allo-
cator [15].

4.2 Generation of Input Forests. Our experi-
ments with synthetic benchmarks take a single tree as
input. To determine the effect that different trees might
have on the running time, we generate trees based on
the notion of chain factor. Given a chain factor f ,
0 ≤ f ≤ 1, we employ a tree-building algorithm that
ensures that at least a fraction f of all vertices in a tree
have degree two as long as f ≤ 1− 2/n, where n is the
number of vertices in the tree. When the chain factor is
zero, the algorithm generates random trees. When the
chain factor is one, the algorithm generates a degenerate
tree with only two leaves (all other vertices have degree
two). In general, the trees become more unbalanced as
the chain factor increases.

The tree-building algorithm takes as input the
number of vertices n, the chain factor f and the bound
d on the degree. The algorithm builds a tree in two
phases. The first phase starts with an empty tree and
grows a random tree with r = max (n− dnfe, 2) vertices
by incrementally adding vertices to the current tree. To
add a new vertex v to the current tree, the algorithm
randomly chooses an existing vertex u with degree less
than d, and inserts the edge (u, v). In the second phase,
the algorithm adds the remaining n − r vertices to the
tree T obtained by the first phase. For the second phase,
call each edge of the tree T a super edge. The second
phase inserts the remaining vertices into T by creating
n − r new vertices and assigning each new vertex to
a randomly chosen super edge. After all vertices are
assigned, the algorithm splits each super edge (u, v)



with assigned vertices v1, . . . , vl into l + 1 edges (u, v1),
(v1, v2), . . . (vl−1, vl), (vl, v). Since all of the vertices
added in the second phase of the construction have
degree two, the algorithm ensures that at least a fraction
f of all vertices have degree two, as long as f ≤ 1−2/n.

Our experiments show that the performance of RC-
Trees is relatively stable for primitive trees with varying
chain factors, except for the degenerate tree with only
two leaves. When measuring the effect of input size,
we therefore generate trees with the same chain factor
(but with different number of vertices). For these
experiments, we fix the chain factor at 0.5. Since the
data structure is stable for a wide range of chain factors,
any other chain factor would work just as well.

For all our experiments that involve synthetic
benchmarks, we use degree-four trees. We use degree-
eight trees for the semi-dynamic minimum spanning
trees, and the max-flow applications.

4.3 Generation of Operation Sequences. For the
synthetic benchmarks, we generate a sequence of oper-
ations and report the time per operation averaged over
1024K operations. All operation sequences contain one
of the following three types of operations

1. application-specific queries,

2. application-specific-data changes, and

3. edge insertions/deletions (link and cuts).

We generate all application-specific queries and data
changes randomly. For queries, we randomly pick the
vertices and edges involved in the query. For data
changes, we pick random vertices and edges and change
the labels (for vertices) and weights (for edges) to a
randomly generated label or weight respectively.

For generating edge insertions/deletions, we use two
different schemes. The first scheme, called fixed-chain-
factor scheme ensures that the chain factor of the forest
remains the same. Most experiments rely on this scheme
for generating the operations. The second scheme,
called MST-scheme, relies on minimum spanning trees,
and is used for determining the performance for change
propagation under batch changes.

— Fixed-chain-factor scheme: This scheme generates
an alternating sequence of edge deletions and in-
sertions by randomly selecting an edge e, deleting
e, and inserting e back again, and repeating this
process. Since the tree is restored after every pair
of operations, this scheme ensures that the chain
factor remains the same.

— MST Scheme: The MST scheme starts with an
empty graph and its MST, and repeatedly inserts

edges to the graph while maintaining its MST.
To generate a sequence of operations, the scheme
records every insertion into or deletion from the
MST that arise as a result of insertions to the
graph.

In particular, consider a graph G, and its minimum-
spanning forest F , and insert an edge (u, v) into G
to obtain G′. Let m be the heaviest edge m on the
path from u to v. If the weight of m is less than the
weight of e, then F is a minimum-spanning forest
of G′. In this case, the forest remain unchanged
and the scheme records nothing. If the weight of m
is larger than that of e, then a minimum-spanning
forest F ′ of G′ is computed by deleting m from F
and inserting e into F . In this case, the scheme
records the deletion of m and insertion of e.

Since our implementation of RC-Trees assumes
bounded-degree trees, we use a version of this
scheme that is adapted to bounded-degree trees. If
an inserted edge e causes an insertion that increases
the degree of the forest beyond the predetermined
constant, then that insertion is not performed and
not recorded; the deletion, however, still takes
place.

5 Experimental Results

We ran all our experiments on a machine with one
Gigabytes of memory and an Intel Pentium-4, 2.4 GHz
processor. The machine runs the Red Hat Linux 7.1
operating system.

5.1 Change Propagation. We measure the time
for performing a change propagation with respect to
a range of chain factors and a range of sizes. Fig-
ures 6 and 7 show the results for these experiments.
To measure the cost of change propagation inde-
pendent of application-specific data, this experiment
performs no annotations—-rake data, compress data,
and finalize data operations are specified as “no-
ops”.

Figure 6 shows the timings for change propagation
with trees of size 16K, 64K, 256K, 1024K with varying
chain factors. Each data point is the time for change
propagation after one cut or one link operation averaged
over 1024K operations. The operations are generated by
the fixed-chain-factor scheme. As the timings show, the
time for change propagation increases as the chain factor
increases. This is expected because the primitive tree
becomes more unbalanced as the chain factor increases,
which then results in a larger RC-Tree. When the chain
factor is one, the primitive (degenerate) tree has only
two leaves. Trees with only two leaves constitute the
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worst-case input for change propagation, because this
is when the depth of the corresponding RC-Trees are
(probabilistically) large compared to a more balanced
tree of the same size. As additional data points for
0.91, 0.92, . . . , 0.99, show the steepest increase in the
timings occurs when the chain factor increases from 0.99
to 1.0. This experiment shows that change-propagation
algorithm is stable for a wide range chain factors for
both small and larger trees.

Figure 7 shows the timings for varying sizes of
trees with chain factors 0, 0.25, 0.50, 0.75, and 1.0. Each
data point is the time for change propagation after one
link or cut operation averaged over 1024K operations.
The operations are generated by the fixed-chain-factor
scheme. The experiments show that the time for change
propagation increases with the size of the input, and
that the difference between trees of differing chain
factors are relatively small, except for the degenerate
tree (chain factor of one). This experiments suggests
that the time for change-propagation is logarithmic in
the size of the input and proven by previous work [2].
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5.2 Batch Change Propagation. An interesting
property of change propagation is that it supports batch
operations directly without any change to the imple-
mentation. Figure 8 shows the timings for change prop-
agation with varying number cut and link operations in
batch and in standard cascaded (one-by-one) fashion.
The sequence of operations are generated by the MST
scheme for a graph of 1024K vertices. The x axis (in
logarithmic scale) is the size of each batch increasing
from 1K to 1024K. Each data point represents the total
time for processing the given number of cut and link
operations in a batch or in a cascaded fashion.

The figure suggests a logarithmic factor asymptotic
performance gap between processing changes in batch
and in cascaded modes. This is expected, because,
as the size of the batch approaches n, the change-
propagation algorithm takes expected O(n) time in
the size of the input forest. Processing a x link or
cut operations one-by-one, however, requires expected
O(x log n) time.

5.3 Application-Specific Queries. Figure 9 shows
the time for various application-specific queries for
varying chain factors and input sizes. The queries for
diameters and medians are not included in the figure,
because they are very fast—they simply read the value
at the root of the RC-Tree.

In these experiments, each data point is the time
for one query averaged over 1024K randomly generated
queries. For comparison the data line “path traversal”
shows the time for starting at a leaf of the support tree
and walking up to the root of that tree without doing
any operations. The path-traversal time is measured
by randomly selecting leaves and averaging over 1024K
leaves. Since most interesting queries will at least walk
up the RC-Tree (a standard constant-degree tree), the
path traversal time can be viewed as the best possible
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Figure 9: Queries versus chain factor and input size.

for a query. As the figure shows, the time for all queries
are within a factor of five of the path-traversal time.

The time differences between different queries is a
result of the specific computations performed by each
query. The least common ancestor (LCA) queries, for
example, traverse three different paths bottom up until
they meet and one path down. Subtree queries traverse
two paths bottom up, and also touch the clusters
neighboring the paths.

The timings suggest that all queries are logarithmic
time. This is expected because all queries take time
proportional to the height of the underlying RC-Tree.

5.4 Application-Specific Data Changes. We
consider two types of application-specific data changes:
label changes (for vertices), and weight changes (for
edges). Processing a data change involves changing the
weight or the label in the primitive tree and updating
the RC-Tree with respect to the change. Since the
weights and labels do not affect the structure of the
RC-Trees, handling such changes require updating
just the annotations of the RC-Trees. Data changes
are therefore handled by changing the tag of the base

 1
 2
 4
 6
 8

 10
 12

 16

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ti
m

e 
 fo

r D
at

a 
C

ha
ng

es
 (m

ic
ro

se
co

nd
s)

Chain Factor (Forest Size = 1024K)

Diameter (Weight)
Closest (Weight)
Center (Weight)
Closest (Label)

Subtree (Weight)
Median  (Weight)

Median  (Label)
Path (Weight)

Path Traversal

 0.5

 1

 2

 4

 8

 16

 32

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Ti
m

e 
fo

r d
at

a 
ch

an
ge

s 
(m

ic
ro

se
co

nd
s)

Forest size

Diameter (Weight)
Closest (Weight)
Center (Weight)
Closest (Label)

Subtree (Weight)
Median (Label)

Median (Weight)
Path (Weight)

Path Traversal

Figure 10: Weight changes vs chain factor & forest size.

cluster corresponding to the change, and updating the
tags of all clusters on the path to the root.

Figure 10 shows the timing for edge weight and
vertex label changes versus the chain factor and the
size of the primitive forests. All our applications, except
but for the Least-Common Ancestors, involve weighted
trees. Weight changes are therefore relevant to all
these applications. Vertex label changes however are
only relevant to nearest-marked vertex, and the median
applications. In the nearest-marked-vertex application,
a label change can change an unmarked vertex to a
marked vertex or vice versa. The mark indicates if
that vertex is in the special set to which the distance
of a given query node is measured. In the median
application, a label change can change the contribution
of a vertex to the weighted median.

As Figure 10 shows the time for data changes are
relatively stable across a range of chain factors. For
comparisons purposes, the figure also shows the time
for path traversals. This measure is taken by randomly
selecting leaves in the RC-Tree and measuring the time
for traversing the path to the root (averaged over 1024K
leaves). Since each data update traverses a path from



a leaf to the root of the tree, the path-traversal time
can be viewed as a lower bound for processing a data
change. Figure 10 shows that the time for data changes
is within an order of magnitude of the time for path
traversals for most applications except for the diameter
application. In general, if the application involves
complex annotations, then it is slower to process a
weight or label change.

The timings suggest that all data changes take
logarithmic time to process. This is expected, because
RC-Trees have logarithmic height in expectation.

5.5 Comparison to Link-Cut Trees. We imple-
mented the Link-Cut Tree interface of Sleator and Tar-
jan [17, 18] as an application to our library. The inter-
face supports link and cut operations, path queries, and
an addCost operation for adding weights to paths. We
compare our implementation to Renato Werneck’s [21]
implementation of Link-Cut Trees using splay trees.

Figure 11 shows the timing for link and cut oper-
ations. As the figure shows, Link-Cut Trees (written
LC-Trees in figures) are up to a factor of five faster
than the RC-Trees for links and cuts.

Figure 12 shows the timings for data changes. For
operations that add a weight to a path, Link-Cut Trees
are up to 50% faster than RC-Trees. For operations
that change the weight of one edge, RC-Trees are up to
50% faster than Link-Cut Trees.

Figure 13 shows the timings for queries. For path
queries that ask for the heaviest edge on a path, RC-
Trees are up to 60% faster that Link-Cut Trees. For
comparisons purposes, Figure 13 also shows the timing
for path queries, for a version of our interface that does
not support adding weights on paths. These queries
are up to a factor of three faster than Link-Cut Trees.
Certain applications of path queries, such as Minimum-
Spanning Trees, do not require adding weights on paths.

These comparisons show an interesting trade-
off. Whereas RC-Trees tend to perform better in
application-specific queries and data changes, LC-Trees
perform better for structural changes (link and cut op-
erations). As the experiments with minimum-spanning
trees, and max-flow algorithms show, this trade-off be-
tween structural and data changes makes one data
structure preferable to the other depending on the ratio
of link-cut operations to queries. Note also that LC-
Trees support path queries only and must be extended
internally to support other type of queries such as sub-
tree queries [5, 16] that RC-Trees support.

5.6 Semi-Dynamic Minimum Spanning Trees.
We compare the performance of the implementations
of a semi-dynamic minimum spanning tree algorithm
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using RC-Trees and Link-Cut Trees. The semi-dynamic
algorithm maintains the minimum-spanning tree of a
graph under edge insertions to the graph. When an
edge e is inserted, the algorithm finds the maximum
edge m on the path between the two end-points of e
via a path query. If the weight of e is larger than that
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of m, the algorithm replaces m with e in the MST. If
the weight of e is larger than that of m, then the MST
remains the same. To find the maximum edge on a
path quickly, the algorithm uses a dynamic-tree data
structure to represent the MST; this enables performing
path queries in logarithmic time. An edge replacement
requires one cut and one link operation on the dynamic-
trees data structure.

For this experiments, we compare two implemen-
tations of the semi-dynamic MST algorithm that only
differ in their choice of the dynamic-trees data structure.
We start with a graph of 32K vertices and no edges and
randomly insert edges to the graph while updating its
MST. We generate the sequence of insertions offline by
randomly selecting a new edge to insert, and by ran-
domly generating a weight for that edge. Since our
implementation of RC-Trees supports constant-degree
trees only, we generate a sequence of insertions that en-
sures that the underlying MST has constant degree. For
this experiment, we used degree-eight RC-trees.

Figure 14 shows the timings using RC-Trees and

Link-Cut Trees. Since the edge weights are randomly
generated, insertions are less likely to cause replace-
ments as the graph becomes denser. Therefore the num-
ber of queries relative to the number of link and cut op-
erations increase with the number inserted edges. Since
path queries with RC-Trees are faster than with Link-
Cut Trees, the semi-dynamic MST algorithm performs
better with RC-Trees for dense graphs.

5.7 Max-Flow Algorithms. As another applica-
tion, we implemented the max-flow algorithm of Sleator
and Tarjan [17]. The algorithm uses dynamic trees to
find blocking flows. For the experiments, we used the
DIMACS’s Washington Generator in fct 2 mode to gen-
erate random level graphs with 5 rows and n/5 columns,
with capacity up to 1024K. The sum of the in-degree and
the out-degree of any vertex in a random level graphs
generated with these parameter is bounded by 8. We
therefore use degree-eight RC-Trees for this experiment.

A random level graphs with r rows and l levels
consists of rl + 2 vertices. The vertices consists of a
source, a sink, and r rows. Each row consists of l
vertices, one vertex for each level. A vertex at level
1 ≤ i < l is connected to three randomly chosen vertices
at level i + 1 by an edge whose capacity is determined
randomly. In addition, the source u, is connected to
each vertex at the first level by an edge, and each vertex
at level l is connected to the sink v by an edge. The
capacities of the edges incident to the source and sink
are large enough to accommodate any flow.

As Figure 15 shows the timings for two implemen-
tation of the max-flow algorithm of Sleator and Tarjan
that differ only in their choice of the dynamic-tree data
structure being used. As the timings show the LC-Trees
implementation is faster than the RC-Trees implemen-
tation. This is expected because the algorithm performs
more structural changes (link and cuts) than queries.
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